
Collectomania

1 | P a g e

Ben Gurion University

The program in Software Engineering

Authors: Yuri Gabaev

 Maria Kertsburd

 Olga Sibiryov

 Amir Eluk

Revision: 1.0

Date: 29 July, 2012

Collectomania
Final Document

Collectomania

2 | P a g e

Contents
1. User Manual ... 4

1.1 Login Window ... 4

1.2 Registration Window ... 5

1.3 Welcome Window .. 6

1.4 Albums Window .. 7

1.5 Single Album Window .. 8

1.6 Cards Window ... 11

1.7 Market Window ... 12

1.8 Invites Window .. 13

1.9 Mini-Game .. 14

1.10 Codes Window ... 15

2 Install and run .. 17

2.1 Technical Requirements .. 17

2.2 Installation .. 17

2.3 Download the Code and Run ... 19

2.4 Important Remarks for Further Management 20

3. Developer Manual ... 21

3.1 High Level Architecture Design .. 21

3.1.1 Design: ... 21

3.1.2 Data Flow: .. 22

3.2 The User Interface .. 23

3.2.1 Main: ... 23

3.2.2 Pages: .. 23

3.2.3 Custom Components: ... 23

3.2.4 Action Script Code .. 24

3.3 The Server API ... 26

3.4 The Server Logic ... 27

3.4.1 Controllers: ... 27

3.4.2 DB Access: .. 27

3.5 The Data Base ... 28

4. Testing ... 29

4.1 Unit testing: .. 29

4.2 Integration testing: .. 33

Collectomania

3 | P a g e

4.3 Scalability ... 35

4.4 Availability .. 35

4.5 Compatibility: .. 35

4.6 Security: .. 35

4.7 Stability: ... 36

4.8 Localization and International: .. 36

5 Future extensions ... 37

Collectomania

4 | P a g e

1. User Manual
1.1 Login Window

The registered user enters his username and password in the appropriate fields, and clicks

on “Login” button, and goes to “Welcome window”

Unregistered user clocks the “Register here” button and goes to “Registration window”.

Collectomania

5 | P a g e

1.2 Registration Window

The unregistered user enters his name, e-mail, selected username and password. When he

finishes, he clicks the button “Register” and waits for confirmation of registration. When the

registration is done, the user goes back to “Login Window”.

If the registration is unsuccessful the user gets message with the specified problem and can

fill in the details again.

Of course, the user has an option to cancel the registration at any moment.

Collectomania

6 | P a g e

1.3 Welcome Window

In the middle of the window the user can see general notifications about the game

and list of available albums.

On the left side the user can see available options of windows (albums, cards etc.)

The frame below the menu would be filled with different messages and notifications

that are directed to the user. The user can erase a message by clicking on this frame.

When the user clicks on the logo in the center of the page (or when he clicks on the

“Albums” button in the left menu), he goes to the “Albums Window”.

If the user clicks on “Logout” button, he goes back to the “Login Window”.

Collectomania

7 | P a g e

1.4 Albums Window

In the top list of “My Albums”, the user can see his current albums. If he clicks on the

picture of the album he can see some details about the window in the right window

(titled with “Album description”. If user clicks twice on the picture of one of his

albums, he goes to “Single Album Window”.

Collectomania

8 | P a g e

1.5 Single Album Window

On this window user can see two pages of his album. He can move between the pages by

clicking on “Previous Page” and “Next Page” buttons.

He can see what cards he needs to paste (according to the bright pictures on every page)

and the list of his not pasted cards – “My cards” list.

 There are several options on this window (The changes are in bold red frames):

a. Information about the card.

By clicking on one of the cards in “My Cards” list, the user gets in the central frame on

this page a larger version of the card and some information about this card:

Collectomania

9 | P a g e

b. Pasting the card:

When user clicks on “Paste card” button, the card is pasted on the appropriate place

(if it is shown in the current page, otherwise the user gets an error in the left frame).

The picture becomes highlighted and the user gets a notification about the

performed action in the left frame:

The picture disappears from the central frame and from the list of not pasted cards.

a. Adding card to wish-list.

By double click on one of the bright pictures on the album’s pages the user can add

this card to his wish-list (the list of cards he doesn’t have, but wishes to have).

If the card does not appear in the wish-list, it is added ant the user gets appropriate

notification in the left frame. If the card appears in the wish-list the user gets an

error notification.

Collectomania

11 | P a g e

Let’s take a look on two examples:

1. The card of the cat was selected (and it appears in the wish-list):

2. The card with id 106 was selected (and it does not appear in the wish-list).

Collectomania

11 | P a g e

1.6 Cards Window

This window is reached by clicking in the “Cards” button in the menu.

On this window the user can see 3 lists:

1. Wish-list (was described in the previous section)

2. Trade-list – the list of cards the user doesn’t need and he wants to trade them or

play on them (more details about this subjects in the sections 7 and 8)

3. The list of all cards the user has – the user can select one of the shown cards and

add it to his trade-list by clicking on the “Add” button. The user can’t trade

pasted cards, so it is not allowed to add pasted cards to trade list. Pasted cards

are very bright, and can be recognized in this manner (like Papasmurf).

The user can also remove cards from wish-list/trade-list by selecting one of the cards

and clicking the “Remove” button.

Collectomania

12 | P a g e

1.7 Market Window

This window can be reached by clicking on the “Market” button in the menu.

On this window the user can see users he can trade cards or play on cards with them. The

system finds these users automatically by maximum compatibility with the current user.

The user selects the card he is ready to offer the other user and the card he wants from the

other user. Then he selects one of two options: Trade or Game by clicking appropriate

button.

When the request is sent, the sending user gets an appropriate notification. If the user has

selected the Game option, the game is stopped and he moves to a waiting mode, like this:

Collectomania

13 | P a g e

The receiving user gets an invitation for trade or game and it is possible to indicate

by the appearing number of invites on “Invites” button, like this:

1.8 Invites Window

This window can be reached by clicking on the “Invites” button in the menu.

On this page the user can see all the requests, he has got from other users.

The user can chose to confirm or decline. If the request is a simple Trade, and he

confirms the request, then the users switch cards. The sending user receives

notification about the performed trade. If the request is a Game, he goes to “Mini-

Game”.

If the user declines the request nothing happens, except the sending user receives

notification about the declined request.

Collectomania

14 | P a g e

1.9 Mini-Game

Each user in turn makes his move. When his opponent makes his turn, he can see

the description of turns below the pictures of moves. For example:

After each turn the users get notification about the winner and the loser of the turn.

In the end of the game, they receive notification about the winner and loser of the

entire game,

The winner receives his opponent’s card and keeps his.

Collectomania

15 | P a g e

1.10 Codes Window

This window can be reached by clicking on the “Codes” button in the menu.

Each user can receive a secret code for a card (or even some cards). The way, the

user can get his code is defined by the owner of the album.

The user can enter this code in an appropriate place on this window and sends the

code to the system by clicking “Send” button. If the code is valid, the user can see

below his new cards, like in this picture:

Collectomania

16 | P a g e

If the code is not valid, the user receives an error message:

Collectomania

17 | P a g e

2 Install and run

2.1 Technical Requirements

- Eclipse IDE for Java EE developers. Helios version will be enough.

- Tomcat 7

- BlazeDS.war file

- Subclipse – plugin providing support for Subversion within the Eclipse IDE.

- Adobe Flash Builder v4.5x

- SQL Server – MySQL v5.5.22

- MySQL Workbench – MySQL Workbench gpl v5.2.38

- Debug Flash player for your current version of Firefox browser (not mandatory)

The newest versions of tools should also work fine, due to back support and compatibility.

2.2 Installation

1. Download and install “Eclipse IDE for Java EE developers” from official website

http://www.eclipse.org.

2. Next download Tomcat server from website http://tomcat.apache.org/download-

70.cgi install it and integrate with eclipse. You can also install Tomcat plug-in for

Eclipse, but it is not mandatory. Do not change the default settings during the

installation. Pay attention that the running port should be set to 8080.

3. Download BlazeDS package from

https://www.adobe.com/cfusion/entitlement/index.cfm?e=lc_blazeds. Then extract

files. In fact you need only blazeds.war file. Put this file in Tomcat directory. This

directory already includes directories: “bin”, “conf”, “lib” etc.

4. Download Subclipse. You can do it from within Eclipse: Help  Eclipse

Marketplace…  search for Subclipse…

http://www.eclipse.org/
http://tomcat.apache.org/download-70.cgi
http://tomcat.apache.org/download-70.cgi
https://www.adobe.com/cfusion/entitlement/index.cfm?e=lc_blazeds

Collectomania

18 | P a g e

5. Install Adobe Flash Builder version 4.5. Once you completed the installation, you can

now install the plugin for Eclipse.

5.1. Navigate to the installed Flash Builder installation location and open the

utilities folder.

5.2. Run the executable Adobe Flash Builder 4.5 Plug-in Utility.exe.

5.3. Select the language and click on OK

5.4. Select the Flash Builder installation location if prompted.

5.5. Select the Eclipse folder into which you want Flash Builder 4.5 to be plugged

into and click ‘Next’. (Note: Your copy of Eclipse must be version 3.6.1 or

later, 32-bit and must contain a folder named “dropins”)

5.6. Review the pre-Installation summary and click on Install

5.7. Following installation it is recommended that you edit the eclipse.ini file for

your Eclipse instance, so that it includes the following settings:

-vmargs -Xms256m -Xmx512m -XX:MaxPermSize=256m -XX:PermSize=64m

6. Download MySQL Server from http://dev.mysql.com/downloads/mysql. Download

MySQL Workbench from http://dev.mysql.com/downloads/workbench. Install. Start

from MySQL Server. During the installation do not change the default settings,

especially the port. Its number should be 3306. Set username with “manager” and

password with “1234”.

7. In order to install debug version of Flash player, remove first the current version of

Flash player. As was written before, debug version is not mandatory, but it is helpful

during the debug of Flex code.

http://dev.mysql.com/downloads/mysql
http://dev.mysql.com/downloads/workbench

Collectomania

19 | P a g e

2.3 Download the Code and Run

1. Create new workspace for this project. If you use existing workspace, which was

created before Tomcat was configured, you may have some strange errors.

2. Download the project from repository.

Open Eclipse  File  New  Other  SVN  Checkout projects from SVN  Click ‘Next’.

Then, choose option ‘create new repository location’ and click ‘Next’.

Type the following repository address:

https://collectomania.googlecode.com/svn/trunk and click ‘Next’ once again.

Expand the repository location and select folder ‘collectomania-prototoype’. Click

‘Next’.

Select option ‘Check out as a project in a workspace’. You may change the project

name from ‘Flex-Java’ to any other, but in further explanation the name ‘Flex-Java’

will be used. Do not change any other default options in this wizard. Just click ‘Next’

and ‘Finish’.

At this point, you may have errors in your project, but should not have red lines in code. You

need to make changes in 2 configuration files.

3. In workspace folder open (with notepad) file ‘.actionScriptProperties’. In line 3 you

can find the path to workspace and the project. Change it to path on your PC.

In workspace folder open (with notepad) file ‘.flexProperties’. In line 2 you can find

the path to blazeDS.war. Change it to path on your PC.

Save changes.

Now you have all the code on your PC, but the database is empty.

4. Open MySQL Workbench and create new server connection. As was mentioned

above, username should be set to ‘manager’ and password to ‘1234’. Create new

SQL schema. The name of the schema should be ‘collectomania1.0’. Now navigate in

downloaded project to Flex-Java  src  dbaccessors  collectomania1.0.sql

Run this script in order to init the database.

https://collectomania.googlecode.com/svn/trunk

Collectomania

21 | P a g e

5. Now you can run the project. Navigate in Eclipse to Flex-Java  flex_src 

Collectomania.mxml

Right click on the file  Run as  Run on server.

By default, eclipse opens its own browser and you can see the code for this page. It is not

recommended to develop the project with this browser. Use Firefox instead, especially if you

installed the debug version of Flash player.

6. Open your browser and type http://localhost:8080/Flex-Java/Collectomania.swf.

2.4 Important Remarks for Further Management

- When you commit a new version to SVN, please make sure that you do not commit

your versions of ‘.actionScriptProperties’ and ‘.flexProperties’. Otherwise, your

coworkers may have some nasty errors.

- If you want to init the database, drop all the tables in schema, but do not drop the

schema and run the script from ‘collectomania1.0.sql’ file.

- There is a website with all documentation http://collectomania.tripod.com. If you

want to continue manage this site, you should login to http://www.tripod.lycos.com

with

Username: collectomania

Password: collect4

http://localhost:8080/Flex-Java/Collectomania.swf
http://collectomania.tripod.com/
http://www.tripod.lycos.com/

Collectomania

21 | P a g e

3. Developer Manual

3.1 High Level Architecture Design

3.1.1 Design:

The system is compound of three main parts:

-The User Interface (Written in Flex)

-The Server Logic (Written in Java)

-The Data Base (MySQL)

Each part will be described in its own chapter.

Collectomania

22 | P a g e

3.1.2 Data Flow:

The application works as most web based applications do. A user click generates an event at

the client side which calls a specific function on the server, the server logic handle the

request and generates the answer data (querying the database if needed). The data is

packed in a ‘data object’ which then get serialized and sent back to the client.

The following diagram illustrates the procedure:

The next chapters will go deeper into each of these parts and describe the design & flow of

data in a more specific way.

Collectomania

23 | P a g e

3.2 The User Interface

The user interface (UI) is a collection of Flex components. All resides under the ‘flex_src’

folder.

3.2.1 Main:

Collectomania.mxml is the main application page, it contains the mainMenu module and a

ViewStack module. These two modules are working together to create the client side MVC.

A view stack is a Flex container component that holds other components and display them

as needed, the main menu is just a collection of buttons each calls this.changeMainPage(i) to

change the displayed page.

3.2.2 Pages:

A page is a Flex container just like all other Flex component.

In collectomania pages resides in the main menu, only one page is showed at a time, this is

the active page.

A page is loaded into memory the first time it is shown on screen, this is when the page

initialization function is called automatically when the pages’ build is complete. When

navigating to pages that have already been initialized it is the developer responsibility to call

the init function if needed

Example: When a user logs in the init function of the main page loads the user data (the

exact method will be described later under client\server communication). This happens

because the page has just been created. If the user now logs out and logs in back again the

main page will show but will not be created again – thus the init function will not get called

and the old user data will show.

To fix this, in the main menu component, every time a page is displayed it’s being checked to

see if it’s the first time and if not the init function is called implicitly.

Most pages have the same layout for the code, starting with the Action Script code followed

by the mxml component that constructs the page. Each component can be a simple

component like a button or a collection of components. It can also be a custom component

which is a template container.

3.2.3 Custom Components:

Custom components are all in the ‘/components’ directory of the project. They are actually

very similar to pages in a way that they are components that can be nested in other

containers. The only different is semantically. We decided to call a page to every component

which we display in the main viewStack.

Collectomania

24 | P a g e

3.2.4 Action Script Code

Action script to MXML pages is what JavaScript is to html, it moves objects around and

updates the viewable components on screen. There are two kinds of changes that are being

done with code:

Local visual changes

Some code just handles visual animation, changing the active screen, or validating user input

before it is being sent to the server.

Remote Procedure Calls

Some code is responsible for communication with the server; the main page

Collectomaina.mxml defines an object of type ‘RemoteObject’ with name ‘uiController’. This

is a Blaze Remote Object described in ‘/flex_src/WebContent/flex/remoting-config.xml’.

There it is binded to the java API class.

It is now possible to call each method the uiController reveals in java using Action Script. The

java method will run returning the answer in a callback defined under the main page, where

uiController is defined.

The call itself is being done by writing something like _API().methodName(Parameters);

Example: In the welcome screen the initData() function calls _API().getActiveAlbums(); .

_API is a global objects which returns the uiController from anywhere in the AS code. Do

note that include "../scripts/scripts.as"; must be written in the top of the page script in order

to user this call.

The callback for getActiveAlbums is ‘welcomeScreen.albumResultHandler(event)’ as can be

seen in Collectomaina.mxml on line 31. ‘albumResultHandler’ Will check that the answer is

valid , parse it to AS objects, update the page data to reflect the new albums it just got and

finally display then on screen.

Communication between Users

In addition to user-server communication type, there is also user-user communication

needed. This mechanism is used when users want to trade cards or play with each other. In

fact, communication between users is passes through the server. The difference from

Remote Procedure Calles described above, that the client side does not wait for a reply

(callback). The client receives messages from other users asynchronously. (One good tutorial

is found here http://www.flex-tutorial.fr/wp-content/uploads/2009/01/data-push-in-flex-

using-blaze-ds.pdf)

This piece of functionality is also implemented with BlazeDS. BlazeDS provides additional

remote object called Consumer. Its job is to listen to the server and receive the messages

http://www.flex-tutorial.fr/wp-content/uploads/2009/01/data-push-in-flex-using-blaze-ds.pdf
http://www.flex-tutorial.fr/wp-content/uploads/2009/01/data-push-in-flex-using-blaze-ds.pdf

Collectomania

25 | P a g e

that were directed to it. Each consumer belongs to channel via adapter. The configurations

are located in ‘/flex_src/WebContent/flex/messaging-config.xml’. There are two consumers

for each client: InvitesConsumer for receiving invites and notifications from other users and

rpcConsumer which established when RPS game started. Each consumer has its own

message handler function. Once message is received, the handler function is called. Handler

is described in "message" attribute of declaration.

Take a look at InvitesConsumer in Collectomania.mxml. It is declared right after remote

object declaration. Consumer object won't receive any message until it has been subscribed

to the server. Right before the subscription is needed to specify the message selector.

Selector filters the messages, and reacts only to messages that are fit to selection criteria. In

fact, the selector is just a header in received message. As every header, it has its name and

property.

Example: InvitesConsumer is declared in Collectomania.mxml, but the subscribtion is

performed only when user complete the login procedure. In loginHandler in LoginPage.mxml

the last line of the handler function calls to InviteConsumerSubscribe(Username.text).

In this short method we want to receive messages for logged in user only. Therefore, we

specify the selector header "toUser" to be a username of logged in user. Remember, that

the invariant of the system is that each user has unique username.

invitesConsumer.selector = "toUser ='"+username+"'";

Each consumer object may have more than one selector, but the developer has to care for

the appropriate selector when message is generated on server. Note that the selector

definition must have SQL condition format.

 (There is also additional way to perform the message selection using subtopics, but it is not

convenient way of implementation of collectomania needs.)

There are additional notes in server side. Package 'asyncsenders' contains classes that

generate the appropriate messages and send them to consumers. Each such class must

extend ServiceAdapter class of BlazeDS architecture and override the method

invoke(Message message). Take a look at Invites sender. Most of its methods are generates

the messages with suitable headers and selectors. At the end of each method there is a call

to routeMessageToService(msg,null). Behind the scene it performs the filtering and then

overridden method invoke is invoked. UserController object in server has its own

InvitesSender. The way of message generation and sending is easy for tracking in Eclipse.

Collectomania

26 | P a g e

3.3 The Server API

As you have seen in the previous chapter, the Flex application can call every method

revealed by the server by using the uiController object. The java source files are in ‘/src/API’

folder. The interface API.java contains the following methods:

We will not go over each one of those as they are clearly described in other documents.

The main think to understand is that every method here can be called from the Flex

application and will return a data object in java. It then will be parsed to an AS object and

handled by the UI.

Data Objects looks similar to this one:

Note:

The server will build this

objects from the data

base, send them

(serialized) to the client

using blazeDS and destroy

them immediately, the

server never keeps data

objects in memory beyond

the purpose of sending them to the client.

Collectomania

27 | P a g e

3.4 The Server Logic

3.4.1 Controllers:

The API implementation (UIController.java) will dispatch the call from the client to one of

the following Controllers:

 AlbumController

 CardController

 GameController

 PinCodeController

 UserController

The following diagram illustrates this:

Each such controller handles the logic it needs to return an answer. All the code in the

controllers classes is pure Java, commented, documented and mostly self-explained.

When a controller needs to get information about the state of the system (i.e. is player x

online? What cards he have? etc..) it uses the DB Access class to (surprisingly) access the

database.

3.4.2 DB Access:

This class holds a connection to the MySQL Database, it is implemented as a singleton so the

connection is always alive (In opposed to connecting on each request). It is important to

know that this is the only class that interact with the database and designed to remain that

way. Each Controller must keep a reference to it and call it upon demand.

Collectomania

28 | P a g e

3.5 The Data Base

As mentioned before the server is stateless (no java data is being kept in memory, only the

logic) thus all the state of the system (like users, cards, sessions and codes) are being kept in

the DB.

The tables and their connections are described in the following diagram:

Collectomania

29 | P a g e

4. Testing

4.1 Unit testing:

First of all, we perform tests from ADD.

Method: FindUserByWishList(uid)

CaseID Goal
Input

Pre-conditions
Post-

conditions
Expected Output

Observed

Output
Test Pass

uid

1

At least

one user

has one of

wished

cards

test@mail.com

User

test@mail.com

has at least one

card in his

wishlist and

there is at least

one suitable

user

None

List of users

(except of

test@mail.com)

grouped by card

List of users

except of

test@mail.com

grouped by

card

V

2

No user

has

wished

cards

test@mail.com

User

test@mail.com

has at least one

card in his

wishlist but there

is no suitable

user

None
Empty list of

users

Empty list of

users and

message

“There are no

invites for

you”

V

3

User has

no cards in

this

wishlist

test@mail.com

User

test@mail.com

has no cards in

his wishlist

None
Empty list of

users

Empty list of

matched users

in Market tab.

V

Collectomania

31 | P a g e

Method: trade(uid1, uid2, cid1, cid2)

CaseID Goal
Input Pre-

conditions
Post-

conditions
Expected
Output

Observed
Output

Test Pass
uid1 uid2 cid1 cid2

1 Legal trade test1@mail.com test2@mail.com 111 222

User test1
has card
111, user
test2 has
card 222

User test1
has card
222, user
test2 has
card 111

Both users
receive

message
about

successful
trade

Both users
receive

message
“Trade with
<username>

on cards
<cardname1>

and
<cardname2>

confirmed”

V

2

One of
users does
not have

appropriate
card. (Card
might be

lost in
game or
traded)

test1@mail.com test2@mail.com 111 222

User test1
has card
111, user

test2 does
not have
card 222

None

User that
asked to
complete
the trade

receives an
error

message.

User that
asked to

complete the
trade

received
message

“trade
cannot be

completed”

V

3

Both users
have no
cards for

trade

test1@mail.com test2@mail.com 111 222

User test1
does not
have card
111, user

test2 does
not have
card 222

None

User that
asked to
complete
the trade
receive an

error
message.

User that
asked to

complete the
trade

received
message

“trade
cannot be

completed”

V

Collectomania

31 | P a g e

Method: EnterPinCode(code, uid)

CaseID Goal

Input
Pre-

conditions

Post-

conditions

Expected

Output

Observed

Output

Test

Pass code uid

1

Valid not

used

pincode

123456789 test@mail.com

code

123456789 is

legal and was

not used

before

Cards that

belong to this

code added

to user's card

list

Success

message

New

cards was

shown to

the user

V

2
Valid used

pincode
123456789 test@mail.com

code

123456789 is

legal code,

but was

already used

None

Error

message

"Illegal

pincode"

Message

“Your

pincode

is wrong”

received

V

3
invalid

pincode
123454321 test@mail.com

Code

123454321 is

illegal

None

Error

message

"Illegal

pincode"

Message

“Your

pincode

is wrong”

received

V

In ADD we specified only the tests for unique functionality of Collectomania system. Of

course we also checked classical illegal user inputs like empty string, very long string etc. The

only places were user can insert strings is ‘login’ window, ‘registration’ window and

‘pincode’ window. In all of the fields the case of empty string is handled in action script level.

Therefore, there is no additional overhead on the server. Maximum string size is specified in

static XML code. The attribute maxChars of TextInput node sets the maximum string

length in field. Again, it avoids from additional call to the server.

In addition we added more test cases to the test suite and run them. All units of the server

were tested apart according to the logic of the requirements.

Collectomania

32 | P a g e

Major tests:

 Name Purpose details Unit Legal input result Illegal input result

1 Communication

test

Test the

communication

between server and

client

Messages were

sent from the

client and checked

at the server, and

vice versa

API The

communication

worked. All

messages were

received at the

destination

2 Paste card Test the “paste

card” use case

User triggered the

paste card

scenario. Check

the card was

pasted

Card controller The card was

pasted.

Illegal actions

were announced

to user.

3 Asynchronous

response

Check the “push

messages”

mechanism. Make

sure all messages

are received

When trading

cards, the offering

user received

notification when

the other user

accepted the offer

Asyncsenders User had received

the notifications

4 Trade card Check the trading

use case. Make sure

cards “change

hands”

When a trade is

made, the cards

should switch

owners

Card controller Cards switched

owners

Invalid input was

announced to

user.

5 Enter pin code Check the pin code

mechanism. Make

sure only relevant

cards received.

When inserting a

legal pin code, the

user will get the

cards linked to it.

Pin code controller User received the

relevant cards.

Pin code marked a

used

User receives a

relevant message

6 Data base tests Check legal queries

are performed and

no SQL injection

allowed

Check legal

queries are

performed and no

SQL injection

allowed

Data access Sql queries were

correct

User can’t insert

sql injection

sentence.

Collectomania

33 | P a g e

4.2 Integration testing:

All units were tested combined to make sure they coordinate and remains

encapsulated (without “high coupling”).

At this point we repeated all tests that were performed in the unit testing phase,

this time combining several controllers including the actual data base by using the

data access unit.

The main purpose of this part was to make sure all use cases earlier defined were

implemented correctly.

Collectomania

34 | P a g e

Major tests:

 Name Purpose Details Unit Legal input result Illegal input result

1 Paste card Test the “paste

card” use case.

User triggered the

paste card

scenario. Check

the card was

pasted

Card controller,

User controller,

UI controller,

Data access

The card was

pasted.

Illegal actions

were announced

to user.

3 Asynchronous

response

Check the “push

messages”

mechanism. Make

sure all messages

are received

When trading

cards, the offering

user received

notification when

the other user

accepted the offer

Asyncsenders,

UI controller,

Data access

User had received

the notifications

4 Trade card Check the trading

use case. Make sure

cards “change

hands”

When a trade is

made, the cards

should switch

owners

Card controller,

User controller,

UI controller,

Data access

Cards switched

owners

Invalid input was

announced to

user.

5 Enter pin code Check the pin code

mechanism. Make

sure only relevant

cards received.

When inserting a

legal pin code, the

user will get the

cards linked to it.

Pin code

controller,

UI controller,

Data access

User received the

relevant cards.

Pin code marked a

used

User receives a

relevant message

6 Play game Check the game

mechanism. Make

sure the winner gets

the lot

When a game is

played, the winner

gets all cards. If

tie, no switch

made. Async.

Messages should

pass

Game controller,

Asyncsenders,

Card controller,

UI controller,

Data access

Messages passes

through,

Winner get cards,

Looser lose cards,

If tie – no switch is

made

Relevant message

appears to

relevant user.

Collectomania

35 | P a g e

4.3 Scalability

Scalability tests were not performed since the project is a prototype and a POC.

4.4 Availability

We performed availability tests by running the application on several computers,

while collecting failures and exceptions.

We logged with several users simultaneously in order to check the multi-user

support of the server.

 Results: no failures occurred, no exceptions were thrown.

4.5 Compatibility:

a. We tested the application on several web browsers (IE, Firefox and Chrom),

several hardware platforms (Dell, HP, IBM). All tests were successful.

b. We tested the application on several devices: Laptop, PC, smartphone

(Samsung – Android). Since the user interface is written in FLEX, the

application cannot be ran on Apple devices.

c.

4.6 Security:

SQL Injections:

In order to avoid SQL Injections, we used parameterized queries mechanism

implemented in Java as PreparedStatement, thus not allowing harmful input

into the system. Here is an example:

Statement = this.conn.prepareStatement("INSERT INTO

`collectomania1.0`.`tblpassword` VALUES (?,?)");

statement.setString(1, username);

statement.setString(2, password);

In addition, we minimized as possible the user free input and used mostly

build-in content.

Collectomania

36 | P a g e

4.7 Stability:

We checked the response of the system to several common errors:

d. Illegal input – we checked what happens if the user inserts illegal input in

every screen the user has access to.

e. Wrong input – we checked what happens when user selects something

impossible (e.g. trade a card he doesn’t have)

To avoid the exceptions being thrown on the server side, we used the “try and

catch” mechanism.

try {

PreparedStatement statement =

this.conn.prepareStatement("INSERT INTO

`collectomania1.0`.`tbluser` VALUES (?,?,?,0,NULL)");

 statement.setString(1, username);

 statement.setString(2, name);

 statement.setString(3, email);

 updateQuery1 = statement.executeUpdate();

 } catch (SQLException e) {

 e.printStackTrace();

 return false;

 }

Flex treats every addressing to null object as an exception, even if it’s a read only

statement of the form – if(obj == null)

So, to avoid exceptions on the client side, we made sure we don’t pass any null

objects to the client. Instead, we chose to send some pre-defined values that

will indicate that an illegal action\exception accrued. The result is analyzed on

the client side and, when necessary, an error message is shown to the user using

the message panel on the bottom left corner of the screen.

Results: the system handles all exceptions and illegal inputs.

4.8 Localization and International:

We checked that the application can be ran on devices with different regional

setting: Latin(USA, UK …) Arab (Egypt, Jordan…) Far East(China, Japan…) Cyrillic

(Russia, Ukraine…) and as long as the web browser language is set to English, the

application runs flawlessly.

In other cases, it depends on the browser settings.

Collectomania

37 | P a g e

5 Future extensions

The future possible extensions of the code are related to the adding of the “Manager” to the

system.

As it has been described in the ARD document the idea behind the project is to give

commercial companies a new possibility to advertise themselves. So each company can

open an album and assign a manager who is responsible for the album. This entity has to be

registered as the manager to the system (with permission of the system administrator of

course).

When a user introduces him as a manger, the system has to check it, and if it is a manager a

different window is opened for the manager. He can see his published albums, unpublished

albums and of course to open a new album.

When the manager opens a new album, he decides about the number of cards on every

page and the number of pages. He loads selected files to his album (pictures, video, etc). He

has an ability to save his album on every part of the loading: the unfinished album will be

saved as “unpublished”, and wouldn’t been seen to the simple users (who collect albums),

until the manager decides to publish it.

After loading the necessary files to the album, the manager chooses values for possible

rules, for example: the number of possible winners’ the number of possible users of the

album, the maximal number of cards to play on, etc.

When the manager finishes creating the album and publishes it, the album appears in the list

of available albums, and the option of start a new album should be added to the system. It

means that the user can click on this album and start collecting its cards. Then the album

appears in his list of albums.

It is necessary to pay attention that before the implementation itself a few important things

are need to be added:

1. Tables which describe Manager, Manager-Album (relationship between managers

and albums) and tables of the possible rules.

2. Appropriate data objects in java (server side) and in flex (client side).

In addition to the above extensions, there is need to take care of some non-functional

requirements, those were mentioned in the ADD and were not implemented in the

presented project because of the changed requirements and the highlights from the

customer’s side.

